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Abstract

A new method for design and generation of spiral bevel gears of uniform tooth depth
with localized bearing contact and low level of transmission errors is considered.

The main features of the proposed approach are as follows:

(1} The localization of the bearing contact is achieved by the mismatch of the generating
surfaces. The bearing contact may be provided in the longitudinal direction, or in the

direction across the surface.

(2) The low level of transmission errors is achieved due to application of nonlinear relations
between the motions of the gear and the gear head-cutter. Such relations may be
provided by application of a CNC machine. The generation of the pinion is based on
application of linear relations between the motions of the tool and the pinion being
generated. The relations described above permit a parabolic function of transmission

errors to be obtained that is able to absorb almost linear functions caused by errors of

gear alignment.

A computer code has been written for the meshing and contact of the gpiral bevel gears
with the proposed geometry. The effect of misalignment on the proposed geometry has also

been determined. Numerical examples for illustration of the proposed theory have been

provided.

ADASQI5 L,




TABLE OF CONTENTS

Introduction

Methed for Generation of Conjugated Pinion-Gear Teoth Surfaces
Generation of Gear Tooth Surfaces

Machine-Tool Settings for Pinion Generation

Equations of Pinion Teoth Surfaces

éomputerized Simulation of Meshing and Contact

Numerical Example

Conciusion

Directions for TCA Program Use

Figures

ADA 09900

4.

12

i3

22

27

31

32

38




e ¢ 4G

.

1 Introduction

The research project is directed at the design and generation of face-milled spiral bevel gears

with the following features:
(1) The depth of the teeth is uniform which means that the height of the teeth is constant.

(2) The gear tooth surfaces contact each other at every instant at a point. Thus, the

bearing contact is localized and therefore the sensitivity of the gears to misalignment

is reduced.

(3) The surface contacs under the load is spread over an elliptical area, whose center is the
theorctical contact point. The set of instantaneous contact ellipses form the bearing
contact. The developed methods of synthesis provide two types of bearing contact that

may be directed: (i) in the longitudinal direction, or (i) across the tooth surface.

(4) Two generating surfaces, £, and L., are used for the generation of the pinion and
the gear tooth surfaces £y and £,, respectively. The dimensions of the instantaneous
contact ellipse depend on the load applied to the gear drive, and on the chosen relation

between the curvatures of ihe generating surfaces.

(5) Gear misalignment may cause transmission errors of a high level and of suck a s¥ .
that a high level of vibration will be resulted. The developed approach provides at each
cycle of meshing a predesigned parabolic function that will absorb the transmission

errors caused by misalignment. The cycle of meshing is determined as

= (1)
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where ¢, and N; are the angle of pinion rotation and the pinion tooth number.

9 Method for Generation of Conjugated Pinion-Gear
Tooth Surfaces

Kinematic Relations
We will consider initially an imaginary process for generation when .the pinion and gear
sooth surfaces will be ger erated simultaneously. Such an approach will permit one to obtain:
(i) important kinem:tic relations to be executed on the CNC machine, and (it) to visualize
the »ossibility to obtain two kinds of the localized bearing contact. In reality, the pinion
and gear tooth s ¢ t.e are generated separately as it 3s discussed in the following sections.
We start wivis © .- case when the axes of the pinion and the gear form an angle of 90°
(fig. 1). However, the developed approach is applicable for gear drives whose shaft angle
differs of 90°. The pinion and the gear during the process for generation perform rotation
about axes X4, and Xy, , respectively. Two rigidly connected generating surfaces. &; and 5,
perform rotation about the Zn, axis. Surfaces T, and 5, generate the pinion and gear tooth
surfaces £, and T, respectively. The relation between the angular velocities W and W
is represented by the equation
:;_):% = gin 1 (2)
where v, is the pitch angle of the pinion. The transmission function of the gear drive
mmust be obtained for each cycle of meshing as the sum of the theoretical linear function and
the predesigned parabolic function as shown in fig. 2. We may represent the transmission

function at the first cycle of meshing by the equation

4

ADA 3079406




w

Differentiating equation (3), we obtain that

N.
w® = (‘ﬁ;' - 2ady Jun

Taking into account (see equation (2)) that

) Pc
@y = =2
sinT,

we obtain that

N .
1 be — a(-._"f’....
sinT;

= Nosinay

)2

2a¢. Y W€
sinyy sinT

A’
(2 = (22—
W = (3

(3)

4)

(8)

(6)

M

Considering ¢. and w, as the input parameters, we may obtain w(V, 1, 3, and wi?

nonlinear function ¢,(¢.).

using equations (2), (5), (6), and (7), respectively. Since ¢;(¢.) is a nonlinear function,

the generation of the gear requires application of 2 CNC machine for the execution of the

Note: The ratio of w? and w® (W = wt)) is constant during the process of pinion

L) is a circular cone with the pitch angle

tany, = M
n= N,

generation, the instantaneous axis of rotation is directed along the X, axis, and the pinion

axode {in the process of meshing of the pinion tooth surface I, with the generating surface

(8)
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The axode of the generating surface is the plane Z,, = 0 that is tangent to the pinion
axode. '

The ratio of angular velocities %g%, and %(;; is not constant. Therefore, the axode of

w w
gear 2 being in meshing with the pinion and the generating surface L. is not a circular cone.
Generating Surfaces

It was mentioned sbove that two rigidly connected gemerating surfaces &, \nd I, are
applied for the generation of the pinion and gear, respectively. Two pairs of surfaces £, ami
T, are applied to provide two types of bearing contact for the gemerated pinion and gear
tooth surfaces Z; and Z4.

Case 1:

The two generating surfaces are a cone I, and a surface of revolution L.. The surfaces
are in tangency slong a circle and are rigidly connected each to other in the process for
generation (fig. 3). Surfaces I, and ¥, are in line ta.ngency'a!ong lines L., while being in
mesh in the process for generation. Similarly, Z, and £, are in line contact along lines L,
(not shown in fig. 3). However, instantaneous contact lines L., and L do not coincide
each with other but are in tangency at a point that belongs lo the circle L. This means
that surfaces T; and £, are in point contact at every instant that moves slong the circular
arc L, in the process of meshing. The path of contact L (and the bearing contact) has a
longitudinal direction.

Case 2:

The generating surfaces £, and I, are rigidly connected cones that are in tangency along
{ .eir common generatrix L. (fig. 4). Only contact lines L, between surfaces I, and ¥, are
shown in the figure. Each contact line L, and the respective line Ly, are in tangency at the

respective point of the generatrix L. This point is the current point of tangency of gear
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tooth surfeces £y and L.

The generating surfaces X, and X, are the surfaces of two head-cutters that are applied
for the generation of the pinion and the gear, respectively. In reality, the head-cutters are
provided with straight line blades or with circular arc edge blades but not with surfaces. Such
blades are rot:ted about the head- cutier axes to form the generating surfaces. The angular
velocity of rotation of blades must provide the required velocity of cutting or grinding, but
18 not related with the process for generation of the pinion or gear tooth surfaces.

The head-cutier is instalied on the cradle of the cutting machine and then performs with
the cradle the rotation abeut the Z,, axis with the angular velocity w!9 = w!®. Details of

the settings of the head-cutter on the cradle are discussed in sections 3 and 4.

3 Generation of Gear Tooth Surfaces

Applied Coordinate Systems and Machine-Tool Settings

We have considered in Section 2 an imaginary process of generation of conjugate pinion-
gear tooth surfaces based on the assumption that the surfaces will be generated simuliane-
ously. In reality, the pinion-gear tooth surfaces are generated separately, as it was mentioned
above.

This section deals with gear generation and the applied machine-too} settings. The gear
tooth surfaces are generated by 2 head-cutter that is provided with straight-line blades (fig.
3). Both sides of the gear tooth are generated simultaneously. The blades are rotated about
the head-cutter axis. The edges of rotated blades form two circular cones as the generating

surfaces used for the manufacturing of the gear.

Henceforth, we will apply the movable coordinate systems S, and S, that are rigidly
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cunpected to the cradle and the gear, respectively (fig. 6). The fixed coordinate system Sm
is rigidly connected to the cutting machine. Coordinate system S4, is an additionsl fixed one
and is rigidly connected to the coordinate system Sm. The orientation of Sy, with respect
to S, is determined by angle vz = ¥ — 71, where 71 is the pitch angle of the pinion pitch
cone. During the process for generation, the cradle and the gear perform related rotations
about the X.,-axis and the Xg,-axis, respectively. The current angles of rotation of the
cradle and the gear are designated by ., and ¢;, that are related by equation (6) in which
we change. the designation of ¢ for ¢,. This relation provides the predesigned parabolic
function designated for the absorption of transraissicn errors caused by misalignment.

The installment of the head-cutter is shown in fig. 7(a). Figare 7(a) shows the position
of the cradle when ¢, = 0, and the coordinate system S., coincides with Sn. Coordinate
system Sy, is an additional coordinate system that is rigidly connected to S.,, and performs
rotation with S,, as shown in fig. 7(b). Coordinate axes of Sy, and 5, bave the same
orientation. Axis Z, is the axis of the head-cutter (see below). The instaliment of the
head-cutter in S., may be determined by the parameters of the triangle with the apexes
Oe, Oy,, and M, where M is the mean point of the cone distance of gear 2 (fig. 8). The
installment of the head- cutter in coordinate system S, may be determined as well by Hg

and Vs (fig. 8), where

Hg = Am = RuasinB (9)
Ve = Ryzcos 8, (10)

Here, R., = |U,, M| is the nominal radius of the head-cutter (fig. 8), Am = 10 M1,
and 5, is the spiral angle of the gear. Alternative coupled parameters of installment, Sy =

[0, 05| 20d ¢2, He rnd Vg, are related by the equations

8
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Sv2 = (HE + Vg)"* (11)

5= tan(52) (12)

Equations of Gear Generating Surfaces
We have mentioned before that two cones as generating surfaces are used for cutting of
the space of the gear (fig. 5). Fig. 9(b) shows the cutting blade. and fig. 9{a) shows oné

of the generating cones. The generating cone is formed by rotation of the blade :dge about

the Z,, axis. The equations of the cone are represented in S, as

(r. — Sgsinag)cos by
(13)

rm(S(;,gg) = [ (Tc - SG sin aa) sin 0(;

- S cos ag

where 85 and Sg (fig. 9(a)) arc the surface coordinates (the Gausian coordinates); ag is
the blade angle; r. is the radius of the head-cutter that is measured at the tip of the blade.

Parameters r. and R, are related as follows
PW

r.=Ra+ ——2— (14)

The upper and lower signs in (14) correspend to the gear concave and convex sides.
Equations (13) may represent both generating cones, if we will use the rule of signs in
equation (14), and consider that o > 0 and ag < 0 correspond to the gear concave and

convex sides, respectively.

The unit normal to the gear generating surface is represented by the equations

N or Or.
= ik N = o ox 22
Sl o Rl T T (15)

Equations (14) and (15) yield
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- cos ag cos bg
(16)

n”(()g) = - COS ag sin 9(.'
sin ag

Algorithm for Derivation of Gear Tooth Surfaces
The derivation of gear tooth surface £, is based on the following procedure:
Step 1:

Initially we derive the family of generating surfaces in S, using the matrix equation

186,86, 8s) = MapTy(S6.66)
= Mu2(¢2)Md:mMmc3(¢c2)Mszr” (SGs 90)

where ¢, and ¢, are related by equation (6).

(17)

Step 2:
Then, we derive the equation of meshing between the gear and the generating surface

that we represert in the form

nlP) . viP? = §(86,06.4,) =0 (18)

where n(7?) is the unit normal to the generating surface £,,, and v(®? is the relative (sliding)
velocity. The scaler product (n®?) . vi®:%) may be represented in any coordinate system. In
our derivations, the scaler product is represented in Sp,.

Note: we mnay represent as well the equation of meshing in the form

Ns:?) . v5:22) = 0 (19)

where N{?3) ig the normal but not the unit normal to the generating surface.
Equations (17) and (18), considered simultaneously, represent the gear tooth surface as

the envelope to the family {(17) of generating surfaces.

10
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Derivation of Family of Surfaces (17)

Vector function r,,(Sg,0) has been already represented by (13). Matrices in equation

(17) are represented as follows (see figs. 6,7, and §)

1 0 ¢ 0]
_ |0 cos¢, sing, O
Mg, = 0 —~sing; cosgy O (20)
0 0 0 1|
cosvy, O siny; 0]
0 1 ¢ 0
Mypm = | _ siny; 0 cosya O (21)
0 6 ¢ 1}

08 O, —snd,,

00
Mme, = sing,, OS89, (1) g

0 0 (22)

0 0 61
Equations (17) and (20)-(22) represent the family of generating surfaces in form of three

parameters. The relation between these parameters is represented by the equation of meshing

(18).
Derivation of Equation of Meshing

We represent in coordinate system Sy, the unit normal n%? to the generating surface

using the following matrix equation

ns;?)(eG’ ¢2) = Lmo;Lcwz h, (96) (23)
Here:

Vector function n,,(6c) is represented by equation (16). Matrix L is the 3 x 3 submatrix

of the 4 x 4 matrix M. After derivations, we obtain

- cosag cos{fg + ¢.,)
(24)

(85, ¢e,) = | ~cosagsin(fg + o)
sin ag

11
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As a reminder, the variables ¢, and &,, are related by equation (6).
The derivation of the relative velocity v{7? is based on the following considerations
Step 1:

We represent vector v{23) as follows

v = () — LY x rle2) (25)

where
wB =0 0 W™ (26)
w® = Lpw® = Ling; Liyzw® = lwP cos v, 0 w® sin y5]” (27)

The relation between w® and w(® may be obtained by differentiating equation (6) that

yields

"Vl

N5 sin
vy T

w(ﬂ:)
b ™ (28)

¥ = - :
sinvy siny

wle?) - 2a(

4 Machine-Tool Settings for Pinion Generation

Introduction

Henceforth, we will consider methods for the pinion generation that provide two types of
the path of contact : across the surface and along the surface. The developed machine-tool
settings will be determined: (i) for the imaginary process for generation based on application
of two rigidly connected generating surfaces (see figs. 3 and 4), and (ii) machine-tool settings

represented in terms of the Gleason Works terminology.

12
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Coordinate Systems Applied for Pinion Generation

Movable coordinate systems S, and S; are rigidly connected to the cradle of the cutting
raachine and the pinion, respectively (fig. 10). An auxiliary coordinate system S, is rigidly
connected to the head--utter and the cradle. Axes of coordinate systems S, and S, have
the same orientation. Fixed coordinate systems S,

and Sy, are rigidly connected to the cutting machine. The pinion and the cradle perform
rotation about axes r4, and zn, respectively. During the generation, the cradie and the

pinion are rotated uniformly, and the angies of rotation are related as follows :

Gy = $y8inm (29)

where +; is the pinion pitch angle.

Pinion Machine-Tool Settings

The pinion machine-tool settings for the imaginary process ¢f generation are determined
by the following set of parameters (fig. 10): 71, S,y and ¢;. The machine-tc |settings for the
real process of generation may be determined by turning of systems Si, Sy, S;, and §, at
180° about the z,,-axis. Fig. 11 shows the installment of the pinion on the cutting machine
and ite rotation during the process for generaticn. Fig. 12({a) shows the initial installment of

the head-cutter and cradle and fig. 12(b) shows the rotation of the cradle during the process

for generation (fig. 12(b)).

5 Egquations of Pinion Tooth Surfaces

Orientation of Bearing Contact Across Surface

13
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The mentioned type of bearing contact is provided by application of two rigidly connected
circular cones that generate the gear and pinion tooth surface, respectively (fig. 4). Fig. 13
shows the cross sections of the surfaces of the pinion and gear head-cuiters in plane 2, =0
when the cradle is at the initial position that is determined with ¢, = 0, and the coordinate
systems S, and Sn, coincide each with other (fig. 10(b)).

Fig. 14 shows the profiles of the cutter biades used for the generation of the pinion
concave side and convex side surfaces, respectively. Fig. 15 shows the generating surface
(cone) in system Sp,. The derivation of the generated pinion tooth surface is based on the
following procedure.

Step 1:

The head-cutter generating surface is represented in Sp, 28
(fep — Spsinay)cos by
(rep — Spsinay)sind,

-5, co8ary
1

Here, r, is the point radius (fig. 14), o, is the blade angle. The sign of a, should be

(30)

Fp =

considered as positive and negative when the pinion convex and concave tooth surfaces are
generated, respectively. Parameters 8, and S, are the head-cutter surface parameters.

The unit normal of the head-cutter generating surface is represented in Sy, as

= N LY
o = NG, [ Nn = 99, X sy (31
Equations (30) and (31) yield
—cosc, cos b,
ny, = | —cosa,sinf, 132)
sinay
Step 2:
14
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The family of head-cutter generating surfaces is represented in S; by the matrix equation

rl(sps 5»: 95:3) = Midl Mdanmc: Mcm Fp, (Sps 0,)

Here,
1 0 0 07
My, = 0 cos¢y sing, O
1410 ~sing; cosdy O
0 0 0 i
cosn, O siny; 07
6 i 0 0
Mym = | _ sin; 0 cosy O
] 0o o0 1
cwsd,, —sing, 0 0
sin ¢ cos ¢ 00
Mp, = 0 “ 0 “ 10
0 0 01
1 00 Shcosq
_10 1.0 Sysing
Mop=19 0 1 0
0 00 1
Step 3:

The equation of meshing is represented in system S, as

Dy - Vi = 9

Here,
Nem
nm(ap,éc,) = ym | = Lpnc, Ly nc,(ﬂ,)
Ny
vial = ylal) x p
where

15
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(35)

(36)
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*m = Moo Meyp Py

‘-Sp Sin aP C%(Gp + éq) + rcp COS(Q;, + ¢C:) + S"l Cos(¢€; + ql) (41)
=1 =S, sinapsin(fy + 6o} + e sin{6, + &, ) + S 8in(¢e, + q1) ‘
—Sp Ccos a’
Using the designations
Bz = Y'cp COS(B’ + éc;) + 571 COS(¢'C) + ql) (42)
B; = resin(d,+d.,) + Snasin(ée +a)
we obtain
-8, sin ap cos{fy + ¢, ) + B
rm = | —=Spsina,sin(f, + éc,)+ B (43)
—Sp CO8 Oy
g wy €O My Wy CO8S My
wiol = ) B = | 0 |~ 0 = 0 (44)
Wey wy sinm 0
Then, we obtain that (since w,, = w; sin m)
0
vl = ot xr, = 5,cos a,cosm (45)
— Sy sin o, sin(fy + ¢, ) cos 1 + Bycosmy
We have assumed not loosing the generality of the approach that | = 1.
The equation of meshing yields
ym Sp €COS 15 COS Y1 = 1 am Sp 5in arp sin(6fp + G, ) cos 7y + Nym By cosyy = 0 (46)
or
T ym 32
Op, &c, ) = : : 7
Sp(8p, 6c.) Tty €08 Qp = Tzm SN X, 8IN(0, + &c,) (47)
Step 4:

16
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The eavelope to the family of generating surfaces may bs represented in two parameter

form if we eliminate in equation {33) parameter S, using equation (47).

Orieutation of Bearing Contact in Longitvdinal Direction

The mentioned orientation of the bearing contact can be achieved by application of
generating surfaces shown in fig. 3. The profiles of the blades of the head-cutter used for
the generation of the pinion are shown in fig. 16.

The derivation of the equations of the pinion tooth surface generated by a head-cutter
with circular are blades is based on the following procedure:
Step 1:

The coordinates of the center of the blade circular arc for the concave side are represented

by the following equations (fig. 16) :

0.Ci = OM, + MG, (48)
where OM; = r.,, MyC) = R,

Equation (48) yields the following equations for the coordinates of center C)

ygcl) =0,C, ‘Jo=0

26 = 0,C: ko = =Ry siney

& =0,C, i, =r,, ~ Rycosa,
(49)

Step 2:

The position vector of a current point of the circular arc is represented in S, by the

equation (fig.16)

U.A = 0,C1 + C14 = 0,01 + Ran, (50)
17
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where

n, = {cosA; 0 -—sin M7 {51)
is the unit normal to the circular arc that is represented in S,.
Step 3:
The head-cutter surface is a surface of revelution that is generated while the circular
arc is rotated about the axis of the head cutter. The head-cutter surface is represented in

coordinate system S, as follows

T, = rf,f‘) + Ryny, (52)
Here
O = Lyl e

is the position vector of point C; that is represented in Sy
By, = Lpone (54)

is the unit normal to the generating surface that is represented in Sp,

cosf, —~sinf, 0
L, = | sinf, cosd, 0 (55)
0 0 1

Step 4:
For the following derivations, we represent the surface of the head-cutter in coordinate

system Se, (fig. 10(b)). We may use for this purpose the following vector equation

Im = CCICPI + rfl) + Ring, (56)

18
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Here (fig. 10(b))

Ua0,, = Sulcosq sing 0f (57)
l‘ff’) = Lim¢y Ty (58)
ny, = mel Ry, (59)
cos¢d, —sing, 0
Lmc, = | sind. cosd. O (60)
0 0 1

Step §:
The pinion tooth surfar is represented in $; as the envelope to the family of the head-
cutter surfaces that is generated in coordinate system S;. The equation of the family of

surfaces is Aa,s follows :

rl(’\le apy éc;) = M]d(¢l)Md;mrm(Alaqu ¢c,) (61)

As a reminder, angles é., and ¢, angles of rotation of the cradle and the pinion, are

related by the equation

o = hrsinm (62)
Step 6:
The envelope to the family of surfaces is determined by equation (61) and the equation

of meshing that we represent as follows

vimln, =0 (63)

The final expression of the equation of meshing is based on the following derivations.

The sliding velocity is determined as

19
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VP = ey p, = (W) — W)Y X My Ty = WI7) x (¢ 4 Ryn,,)  (64)

Equations (63) and (64) yield

(Ug”) x ré)y.n, = viir11) (65)
where
ri® = L, rp, (66)

and v{»1€1) designates the relative velocity for point C;.
Step 7:

The surface unit normal n,, is a vector function of three variables (A:,9, &.). We may
simplify the vector function nn{X;,6,¢.) using the following considerations :

(1) Equations

vitPd.n, =0 (67)
and
vinél.n, =0 (68)

yield that the relative velocities determined at the point of tangency of the head-cutter and
the pinion, and at the center of the circular arc are collinear. Taking this into account, we

may represent the unit normal nm to the surface of the head-cutter by the following equation

T X vgﬁhbl)

fim = [ X v = (69)

20
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where 7., is a unit vector of the tangent to the §, coordinate line on the head-cutter
surface, that is represented in Sy, system. The unit vector T, is represented by the following

equation

1’,,,,(9’,) = Lmr:Lmojo = me fm (70)
Vector j, is perpendicular to the plane (z,,7.) of the circular arc (fig. 16). A point of
the circular arc traces out in §,, a circle, and the unit tangent T, is represented as

—sind,
o = Lpjajo = | cosé, (71)
0

The advantage of application of equation (69) is that we may represent the surface unit

normal by the vector function tim{6p.6.,). Then, the equation of meshing will yield the

rejation

VSP“C)) N = f(0p,0,) =0 (72)
that is free of parameter A;.

Angle ), can be obtained from the equation

COSA = T - By (73)

Note : Similarly, we may derive the equations of the convex side of the pinion tooth

surface. Center C; of the circular arc (fig. 16) is represented in S, by the equations

2@ =7, + Rycosa, }
(74)

4
20 = ~Rysina,

21
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6 Computerized Simulation of Meshing and Contact

The goals of this investigalion are : (i) the deiermination of paths of contact for aligned
and misaligned gear drives, (ii) and the determination of influence of misalignment on the
transmission errors and the shift of the bearing contact.
Conditions of Continuous Tangency

We set up three coordinate systems Sy, Sy, 53 (fig. 17) that are rigidly conpected to
the frame, the pinion 2nd the gear; ¢’ and é, are the angles of rotaticn of the pinion
and the gear when they are in mesh; H, V, Q &' are the paranr s used to simulate the
misaligninents that represent.

The contact of the tooth surfaces is localized and they are in tangency at every instant
at a point. The simulation of meshing is based on the condition of continuous tangency of

pinion-gear tooth surfaces £, and I;, that are represented in coordinate system S, as follows

18,0 Bey, &) = £ (86, Bcrs 85) (15)
n{(8,, b, 81} = 057 (66, Bey: 63) (76)

where [n{] = |n}f)i = 1; (8,1 6, ),(0a, @) are the surface parameters of the pinion and

the gear, respectively; ¢) ¢3 are the angles of rotation of the pinion and the gear being in
mesh.

Equations (75) and (76) represent a system of five nonlinear equations in six unknowns

represented as

fi(em ¢c1)¢l1)'009 ¢ogs¢‘2) = (1 = 195) (77)

where f; € C'

22
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One of the unknowns in equation system (77), say ¢}, is chosen as the input one. The
continuous solution of these equations is an iterative process that is based on the following

procedure.

Using the first gue s, we consider that a set of parameters desigrated as
PO = (003, ¢§2), (7)), 06", 65, (42)() (78)

satisfies equation system (77). We assume as well, thot we have

— a(fl:ffh f39 fdx f-’))
B8 = 0B, besbo 6mrdh) T (79)

Then, i accordance «o the Theorem of Implicit Function System Existence i15), equation

system (77) can be solved in the neighborhood of P° by functions

05(61) 9e: ($1),85(81), 62, (81), 62(1) (80)
The solution of these nonlinear simultaneous equations is found by numerical metheds.

The path of contact on the pinion tooth surface may be represented by the following

&Xpressions

rl(opy éc:)’ 9?(‘:’;,), ¢q(¢’1) (81)

Similarly, the path of contact on surface £, ray be represented by

rifc, de,)s  6a(d1) @ (6)) (82)
The transmission errors caused by misalignment are determined by the equation
N:

Ady = Gy ~ Ry“;é'l (83)
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Cerivation of Equation System (80)
We use for derivation matrix equations (84)-(87), equations of surfaces ¥, and Z¢, and
the surface unit normals. |

r(6,, 9c,» 64) =MM<¢;)?(9,,¢¢,3) .
i

_ 10 cosgy sinéy O (84)
6 —-sing), cos¢; O ri(0p, éc,)
0 0 0 1
£, 600 #5) = Mia(dh)ra(0,6,)
cos(y +6') 0 —sin(y+4) Q 1 0 0 0
0 1 0 ~V |10 cosdy —singy O
sin(y +&) 0 cos(v+¢6) O 0 sing, cosdy O r2(fc, Pe;)
0 0 0 1 0 0 0 1
(85)
1 0 Q
nf,l)(ﬂ,,, Bey,®) =1 0 cosdy sindy | m(fp &) (6)
0 -sing] cosd,

2 g
ng; )(969 ¢c:x og)

cos(y -+ &) € —sin(y+§) 1 0 0
0 i 0 0 cos¢y —singy |nbg,dc,)
sin(y+6) 0 cos(y+ &) 6 sindy cosdf
(87)
Here; 4, is the pitch angle of the pinion, 72 = ¥ — ", ¥ is the angle formed by the
pinion-gear axes of rotation. Usually, y = 90°.
Be advised that in the case when the generating surface is a cone, the unit normal is
represented by a vector function of one variable (see Section 3)
Bearing Contact

Theoretically, the pinion and gear tooth surfaces are in point contact. Under the load,

the contact is spread over an elliptical area. The determination of dimensions and orientation
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of the instantaneous contact requires the knowledge of principal curvatures and directions
of the contacting surfaces. The solution to this problem is substantially simplified due to
representation of the curvatures of the generated surface by the curvatures of the generating
surface and the parameters of motion {15}.

For the case when the pinion generating surface is a cone, the principal cur atures of the

pinion generating surface are represented as

Y =0 88
KV = cosay/(rey ~ Spsinay) (88)
The principal directions on the pinion generating cone are
eV = [~sind, cos8, O 5
e = [sinapcosd, sinaysind, —cosayp)” (89)
2 - p e b4 b4 2

For the case when the pinion generating surface is a surface of revolution, the principal

curvatures of the pinion generating surface are represented as

K = Uk
(13 (99)
ky' = cosAf(X,+ Ry -coshy)
The principal directions or. the pinion generating cone are
() _ : T
ey’ = [-sind, cosf, 0 (o1)
el = [sinA cos8, sinlsind, —cos)\y|T

Similarly, when the generating surface of the gear is also a cone, we have that the principal

curvatures of the gear generating surface are

B =0
k.gg) = cosag/(r. — Sgsinag)

The principal directions on the gear generating svface are
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e?) = [—- sin 90 COs ga O]T
@ _ (e - T (93)
e’ = [sinagcosfs sinagsit b — cosag)

The principal directions are represented in systems S,, for the pinion case, and S, for
the gear case, respectively.
Because the generating and generated surfaces are in line contact, their principal curva-

tures and directions are related by the following three equations [15]

. 2841at9a
133 — tis — (kj — kn)tas

_ 2.t
ky =k = a3 510 oz (94)

gyttt
kot ks = L,+Lh+_xa?_zz
33

Here, kj, ky, are the principal curvatures of the generating surface; k,, & are the principal

tap2c =

curvatures of the generated surface; o is the angle between the principal directions of the
generating and generated surfaces (fig. 18(a)). The expression for i3, fa3, and 133 are

represented in [15].
The determination of the dimensions of the contact eilipse and its orientation is based

on application of following equations

in o(1?)
_ gsing
tan2r = o arcos ol (95)

where
g9 = kgl) - kgz)
g2 = kgl) - k?)

a1 = cos-1(el" . &)
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ki” and kgn are the principal curvatures of the pinion surface. kfn and kgz) are the

principal curvatures of the gear surface.

The major axis and minor axis of the contact ellipse may be deisrmined as

% = z\/?- , 2= 2@ (96)

where & is the elastic approach obtained from experimental data; A and P cre determined

by
A4 = YK =k — (g2 — 2g192 c08 2087 + gD -
B = 3D — k) 4 (g7 — 2919 cos 2007 + g})1]
and

kS = kD 4 kY
KD = 1D 4
7 Nuaerical Examples

Introduction

The purpose of the numerical examples is: (i) to determine the influence of errors of
alignment on the transmission errors and the shift of the bearing contact, and (i) to prove
that the predesigned parabolic function is able to absorb the transmission errors that are
caused by the errors of alignment. We emphasize that the determination of transmission
errors caused by misalign:nent is based on the following approach:

(1) We consider an imaginary process for generation when an ideal transmission func-
tion is provided. Then, using TCA, we simulate erross of alignment and determine the

transmission errors that are caused by the respective error of alignment.
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(2) On the second stage of investigation, we consider again the imaginary method of
generation that has been provided in the previous section. We remind that this method
of generation provides for each cycic of meshing a transmission function and a predesigned
parabolic function as the sum of the ideal linear function and a predesigned parabolic func-
tion. Using the TCA,-we consider the meshing and contact of tae jear misaligned gear drive
that allows to determine: (i) the resulting function of transmission errors as the sum of the
predesigned parabolic function and the function of errors that is caused by misalignment.
We are also able to determine the shift of the bearing contact caused by misalignment by
applying the TCA method.

The simulation of meshing and contact has been a<complished for both methods of gen-
evation described above that provide the longitudinal bearing contact, and the across the
surface bearing contact. The results of computation confirmed that the bearing contact is
stable, and the predesigned parabolic function is able indeed to absorb the almost linear
functions of transmission errors caused by the respective errors of alignment.

Input Data:

The input data is represented in Tables 1-5.

Qutput Data:

The results of computation are represented for two cases of generation: (i) by application
of a pinion head-cutter with straight blades (figs. 19-42); (ii) by application of & pinion
head-cutter with circular arc blades (figs. 43-66). It is assumed that in both cases the geur
is generated by a head-cutter with straight blades. In each case, four sets of figures represent
the respective influence of H, Q, V. &', which indicate the axial displacement of the pinion,
the gear, the offset, and the change of the shaft angle, respectively. Alignment errors are

given in millimeters, &' is given in arc minutes.
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Table 1: Blank Data

Pinion | Gear
Number of teeth 11 41
Shaft angle 90°
Mean spiral angle 35° 35°
Hand of spiral LF RH
. [Outer cone distance (mm) 90.07
[ Face width (mm) - 27.03
Whole depth (mm) 10.0 | 10.0
| Pitch angle 15°17 | 74°59
Root angle 153°1" | 74°5Y
Face angle 15°17 | 14°59

In each set of figures, we represent:

(i) The initial influence of misalignment on the transmission errors, when the predesigned
parabolic function has not been applied. The transmission function caused by misalignment
is almost a linear function (see. for instance, figs. 19 and 20).

(ii) The interaction of the linear function of transmission errors with the predesigned
parabolic function. The results of TCA show that the obtained resulting function is indeed
a parabolic function (see, for instance, figs. 21 and 23).

(i) The location of bearing contact for a misaligned gear drive (see, for instance, figs.

23 and 24).

Similar sets of figures are represented for other kinds of misalignment.
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Table 2: Gear Cutter Specification

| Blade angle 20°
Cutter diameter (mm) { 152.4
Point width (mm) 2.79

Table 3: Gear Machine Tool Settings

Radial sett'ag (mm) 70.53744
Cradle angle -62°14"
Machine center to back (mm) | ¢
Sliding base {mm) 9

Blagk offset (mm) 0
Machine root angle 74°59'

Table 4: Pinion Machine Tool Settings for Generation by a Cone

Convex | Concave

Cutter blade angle 20° 20°

Cutter point radius {(mm) 71.7222 | 80.4876

Radial setting (mm) 68.04991 | 73.31925

Cradle angle ~57°50' | ~66°12'
| Machine center to back (mm) | 0 0

Sliding base (mm) 0 0

Blank oftset (mm) 16 0

Machine root angle 15°1° 15°1
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Table 5: Pinion Machine Tool Settings for Generation by Head-Cutter with circular Arc
Blades

Convex | Concave

' Cutter point radius (om) 71.7222 | 80.4876
"Radial settiog (mm) $8.04901 | 73.31925

Cradie angle ~57°50" | ~66°12'

Machine center to back (mm) | 0 0
 Shiding base (mam) 0 0

Blank ofiset {(mm) 0 0

Machine root angle 15°1' 15°)’

8 Conclusion

Extension of application of 2 CNC machine for generation of spiral bevel gears with the fol-
lowing features has been discussed: (i) The gears are face-milled, the tooth depth is uniform.
(if) Two types of bearing contact are provided directed (a) in the longitudinal direction, and
{b) in the direction across the surface. (iii) A predesigned parabolic {function of transmission
errors is provided for the absorption of transmission errors caused by misalignment. (iv)
Equations of generated pinion-gear tooth surfaces have been derived. (v) TCA computer
program has been developed and the influence of misalignment on the transmission errors
and the shift of the bearing contact has been investigated. The computations that were
performed confirmed the stability of the bearing contact, the low level of transmission errors

and the favorable shape of the funciion of transmission errors, of a rarabolic type, for &

misaligned gear drive.
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g8 Directions for TCA Program Use

There are two TCA programs for two different cases. One program is BEVEL.FOR, for the
case that both the pinion and the gear generating surfaces are cone surfaces. The other
program is RBEVEL.FOR, for the case that the pinion generating surface is 2 surface of
revolution, the gear generating surface is & cone surface. For both programs the input data

files and the output data files are almost the same, except thet there is an additional arc

radius, RHO, iz the input data files for program RBEVEL.FOR.

Input data

1. Con_tro! codes

(a) For right hand gear JCH=1, for left hand gear JCH=2
{b) TL] and TL2 are numbers of extra point on the contact path which should not be
larger that 2

(¢) MM is the number of contact points
2. Blank data

TN1—Pinion number of teeth

TN2-~Gear number of teeth

C—Shaft offset (zero for spiral bevel gear) (mm)
TW~—Face width of gear (mm)
GAMMA~—Shaft angle (degree)
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MCD~-Mean cone distance (mm)
RGMA1-—Pinion root cone angle (degree)
Bl—Pinion spiral angle (degree)
B2--Gear spiral angle (degree)
RGMA2—Gear root cone angle (degree}
FGMA2—Gear face cone angle (degree)
PGMA2—Gear pitch cone angle (degree)
ADD2—Gear mean addendum (mm)
DED2—Gear mean dedendum (mm)
WD—-Whole depth (mm)
CC—Clearance {mm)

DEL~—Elastic approach {(mm)

3. Gear cutter specification

RU2—Gear nominal cutter radius (mm)
PW2—Poini width of gear cutter (mm)
ALP2—Blade angle of gear cutter (degree)
4, Gear machine-tool settings
X(2—-Machine center to back (mm)

GAMA2—Gear machine root angle (degree)
XB2—5liding base (mum)
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EM2—Blank offset (mm)

4. Pinion machine-tcoi settings

RCF—Point radius (mm)

XG1--Machine center to back (mm)
XB1—Sliding base {mm)

EM1—Blank offset (mm)

GAMAL—Pinion machine root angle (degree)
AlP1—Blade angle of pinion cutter (degree)

6. Misalignments

A~-Constant coefficient of the predesigned para:bolic {unction
| H—Misalignment along the pinion axis (mm)

Q—Misalignment along the gear axis (mm)

V~—Misalignment of axis offset (mmm)

&'—Misalignment of shaft angle (arc min.)

Input data files

Files 70 and 60 are for program RBEVEL.FOR, file 70 for the convex side, file 60 for
the concave side. These two files must be read together. Files 90 and 80 are for program
BEVEL.FOR, file 90 for the convex side, file 80 for the concave gide. These two files must
be read together.

Qutput data files
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File 9 is an overall output data file. All the input and output information is stored in this
file. File 01 stores the information of transmission errors for the convex side; file 93 stores
the information of transmigsion errors for the concave side. File 92 stores the information of
contact path and contact ellipse for the convex side; file 94 stores the information of contact

path and contact ellipse for the concave side.
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Figure 1: Representation of axes of rotation of spiral bevel gears in coordinate system Sm
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Figure 2: Transmission function é;(¢;) with a parabolic function of transmission errors
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Figure 3;: Generating surfaces £, and £, that provide contact path along the surface
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Figure 4: Generating surfaces I, and I, that provide a contact path across the surface
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Figure 6: Instailment and orientation of coordinate systems Sa, S.2, Si2, and S
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Figure 7: Coordinate systems Sm, Sca, and S,; applied for gear generation
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Figure 8: Machine-tool seitings for gear generation
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Figure 9: Gear generating surface and its straight line blade profiles
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Figure 10: Coordinate systems Sm, S,,, S¢, and S, applied for pinion generation
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Figure 11: Coordinate systems Sm, Sq, and S applied for pinion generation
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Figure 12: For derivation of relation between imaginary and real pinion machine-tool settings
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Figure 13: Profiles of pinion and gear head-cutters represented in plane Zm =0
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Figure 14: Profiles of straight-line pinion blades
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Figure 16: Profiles of pinion circular-arc blades
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Figure 17: Coordinate systems aprlied for simulation of mshing
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Figure 18: Principal directions and contact ellipse
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Figure 19: Transmission errors: H=0.01lmm (Convex side}
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Figure 20: Transmission errors: H=0.01mm (Concave side)
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Figure 21: Resulting transmission errors: H=0.01mm {Convex side}
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Figure 22: Resulting transmission errors: H=0.01lmm {Concave side)
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Figure 24: Shift of bearing contact: H=0.01mm (Concave side)
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Figure 25: Transmission errors: Q=0.01lmm (Convex side)
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Figure 26: Transmission errors: Q=0.01mm (Concave side)
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Figure 27: Pesulting transmission errors: Q=0.01mm (Convex side}
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Figure 28: Resulting transmission errors: Q=0.01mm (Concave side]
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Figure 30: Shift of bearing contact: Q=0.0lmm (Concave side)
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Figure 32: Transmission errors: V=0.01mm {Concave side)
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Figure 34: Resulting transmission errors: V=0.01mm (Concave side)

63

ADA Z09566,



-~ 2

E oo

T e

S s

S

A 9 «f

f ° 11 + 3 L] ] '}
£§ 0 g 19 15 2 % 30

Tooth length (mm)
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Figure 36: Shift of bearing contact: V=0.01mm (Concave side)
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Figure 38: Transmission errors: &'=1 arc min. (Concave side)
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Figure 39: Resulting transmission errors: §=1 arc min. (Convex side)
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Figure 40: Resulting transmission errors: &'=1 atc min. (Concave side)
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Figure 42: Shift of bearing contact: §'=1 are min. (Concave side)
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Figure 44: Transmission errors: H=0.01mm (Concave side)
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Figure 47: Shift of bearing contact: H=0.01mm (Convex side)

Tooih height {mm)

Tooth length (mm)

Figure 48: Shift of bearing contact: H=0.01mm (Concave side)
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Figure 49: Transmission errors: Q==0.01mm (Convex side)
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Figure 50: Transmission errors: Q=0.01mm (Concave side}
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l""igure 51; Resulting transmission errors: Q=0.0lmm (Convex side)
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Figure 52: Resulting transmission errors: Q=0.01mm (Concave side)
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Figure 53: Shift of bearing contact: Qm0.01lmm (Convex side)
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Figure 54: Shift of bearing contact: Q=0.01mm (Concave side)
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Figure 55: Transmission errors: V=0.0lmm (Convex side)

A, {arc scc.)

'f A 1 ] ) Y

80 -4 20 0 20 40 €0
& (deg)

Figure 56: Transmission errors: V=0.0lmm (Concave side)
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Figure 57: Resulting transmission errors: V=0.01mm (Convex side)
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Figure 58: Resulting transmission errors: V=0.01mm (Concave side}
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Figure 59: Shift of bearing contact: V=0.0lmm (Convex side)
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Figure 60: Shift of bearing contact: V=0.01mm (Concave side)
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Figure 61: Transmission errors: §'=1 arc min. (Convex side)
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Figure 62: Transmission errors: §'=1 arc min. (Concave side)
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Figure 63: Resulting transmission errors: §'=1 arc min. (Convex side)
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Figure 64: ™esulting transmission errors: §'=1 arc min. (Concave side)
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Figure 65: Shift of bearing contact: §'=1 arc rmin. (Convex side)
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Figure 66: Shift of bearing contact: §'=1 arc min. (Concave side)
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